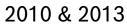
Building dependable products with ROS

Dr.-Ing Ingo Lütkebohle Bosch Research For ROSCon JP, September 26th, 2023

Dr.-Ing. Ingo Lütkebohle

UNIVERSITÄT BIELEFELD



2005 - 2013

₿ROS

2014-

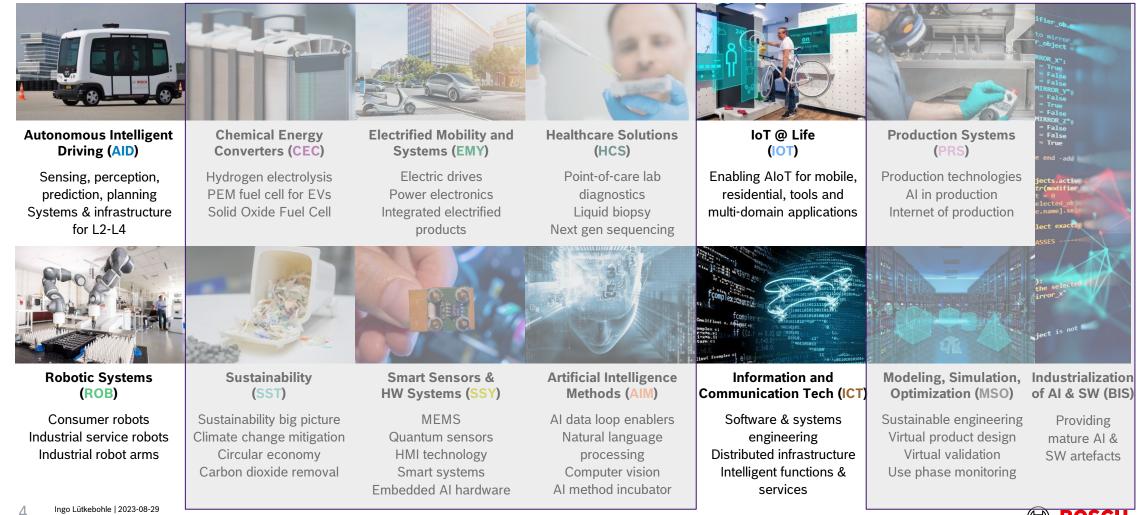
From system integration to dependability From HRI to embedded systems

2

© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

About Bosch Our business sectors

Industrial Technology


ÂU]

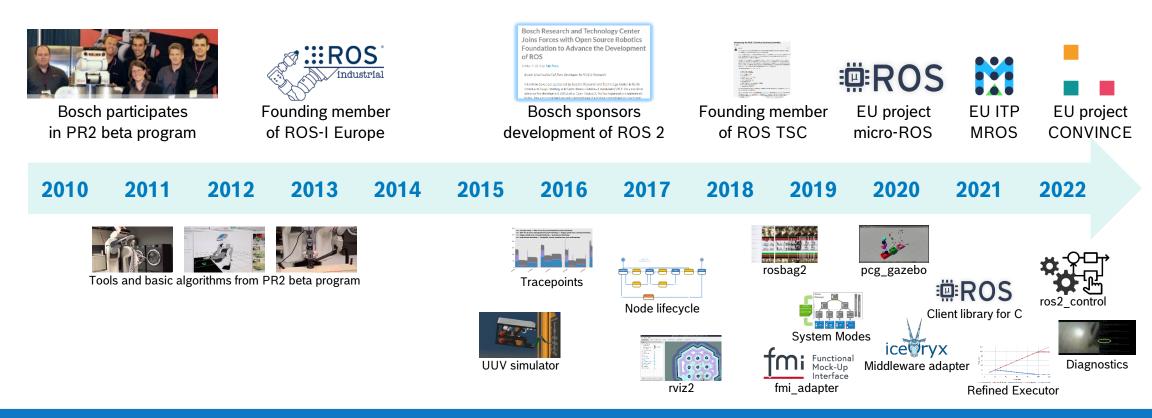
Energy and Building Technology ද ද Consumer Goods

Ingo Lütkebohle | 2023-08-29 © Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Bosch Research Focus Areas

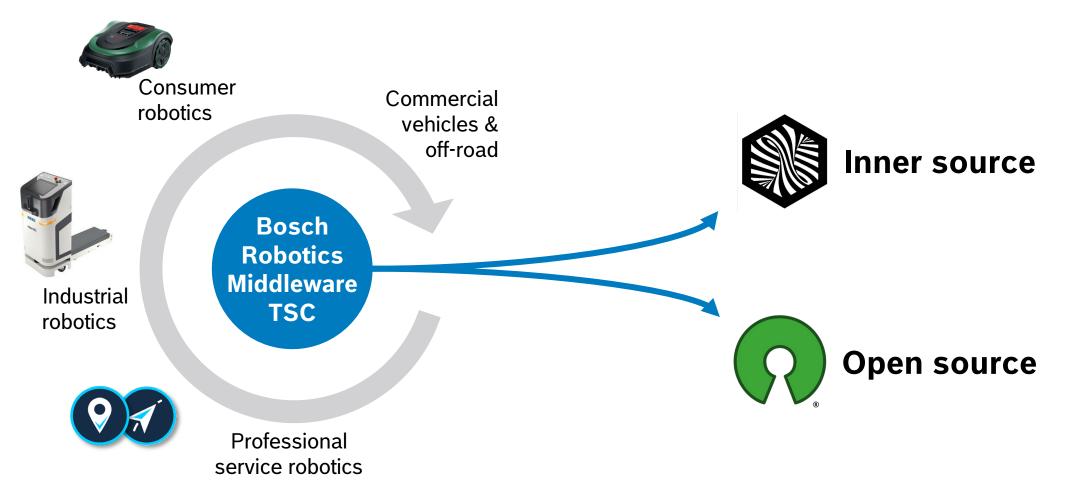
© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH



Robotics at Bosch

5


Bosch's 12 Year Journey with ROS

From a small research team to hundreds of developers using ROS

Steering of Our ROS Strategy and Infrastructure

8

Why ROS?

9

Academic Frameworks before ROS

Year	Framework(s)	Citations
1994	ТСА	~500
1997	DAMN	~700
1998	SmartSoft	<20
1999	ISR	<10
2000	OSCAR	<20
2001	OROCOS MCA	>800 ~100
2002	RoboMote	>500
2003	Player/Stage CARMEN ROCI	>2000 ~300 ~50
2006	YARP MOOS ORCA	>800 ~250 ~200
2007	STAIR	~150
2009	ROS	>11000
2010	LCM Fawkes	~400 ~80

- Industrial frameworks largely robot-specific
 → Academic Open Source Frameworks
- These have many similarities on the *plumbing* level

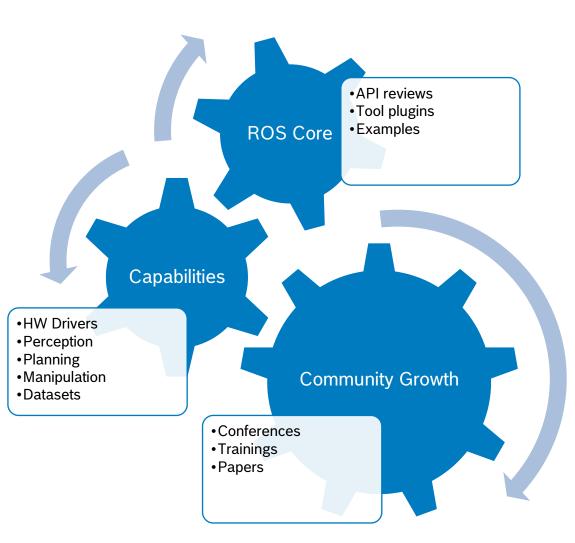
ROS Success Factors Which of these is most important?



Image Source: https://www.ros.org/blog/ecosystem/

Ingo Lütkebohle | 2023-08-29 © Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Building an ecosystem



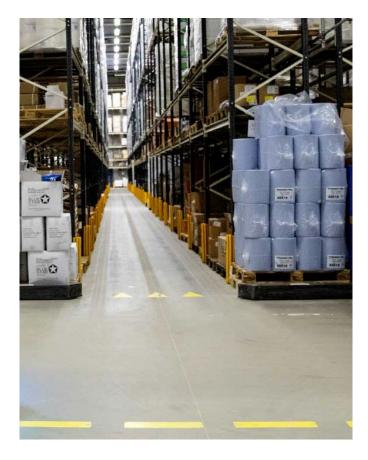
Virtuous cycle

ROS in the real world

14

"The Office Marathon", 2010

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey and K. Konolige, "The Office Marathon: Robust navigation in an indoor office environment," *2010 IEEE International Conference on Robotics and Automation*, Anchorage, AK, USA, 2010, pp. 300-307, doi: 10.1109/ROBOT.2010.5509725.

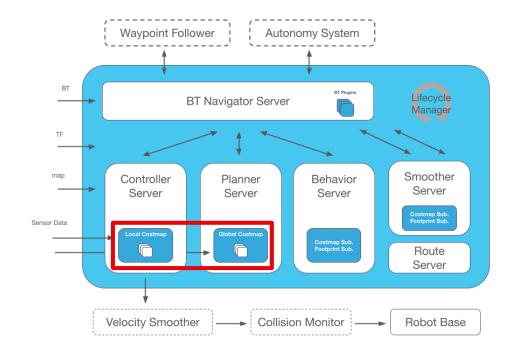

\rightarrow 26.2 miles, 30 hours, no collision, one graze.

Can we use this in production?

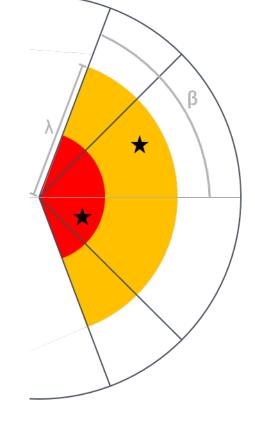
We tried it in 2015

 And we got *really* bad performance in narrow situations

Assumptions vs. Reality


- PR2 in "office marathon"
 - 1kHz odometry
 - 30Hz LIDAR
 - 8 Core Xeon CPU
 - 2.5cm costmap resolution
 - 20 Hz control rate

- Our robot
 - 50Hz odometry
 - 12.5 Hz Safety LIDAR
 - 2 core Atom CPU
 - 10 cm costmap resolution
 - 10 Hz control rate


- Consequences
 - Pose uncertainty larger
 - Inflation radius needs to larger
 - less space to manouver
- Slower speed
- Delayed reactions

On re-use, check assumptions...

But: A clash of worlds

LIDAR-based safety: Speed limit zone Stop zone

The challenge of determinism

Image Source: K. Adam, A. Butting, R. Heim, O. Kautz, J. Pfeiffer, B. Rumpe, A. Wortmann Modeling Robotics Tasks for Better Separation of Concerns, Platform-Independence, and Reuse. In: Shaker Verlag, ISBN 978-3-8440-5319-7. Aachener Informatik-Berichte, Software Engineering, Band 28. December 2017.

20

- Navigation amongst humans
 - Using ROS move_base
- Problem: Robot kept grazing obstacles that were still at a distance in the costmap

System checks for navigation determinism

- Mismatch between reality and model?
 - \rightarrow Check sensor rate
 - \rightarrow Check sensor timing
 - \rightarrow Check model updates

- Mismatch between control and execution
 - \rightarrow Check plant model
 - \rightarrow Check control dead time

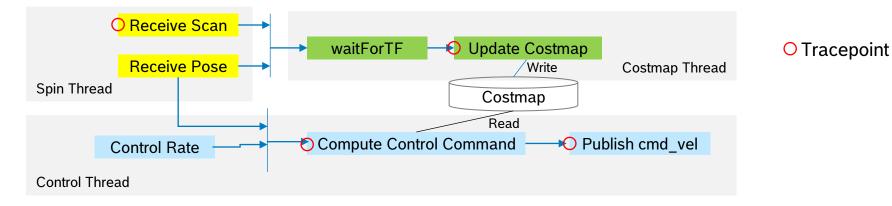
Most common sensor timestamping issues

- Basic sensor processing pipeline:
 - Gray is sensor-side, blue is Linux-side

Acquisition	Processing	Transmission	Kernel read	Scheduling	US wake up	 •
						→Time
 Many drive 	ers used "time	::now()"				

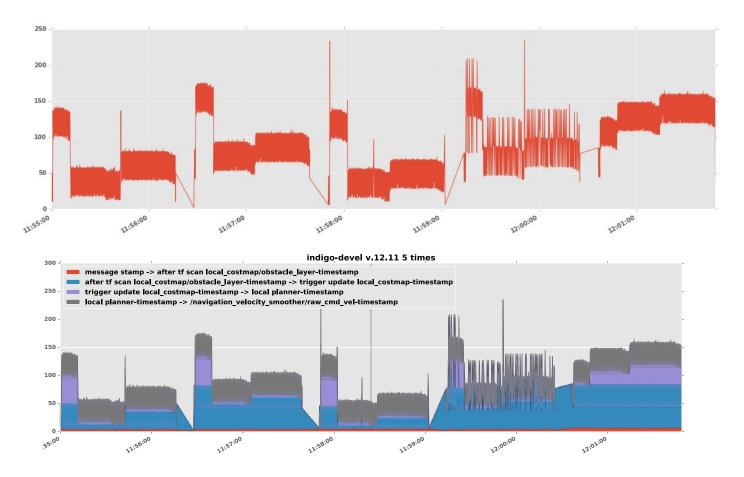
- Too late!
- \rightarrow Error up to sensor period (tens to hundreds of milliseconds)
- Some subtract offset for "transmission delay" or "acquisition delay"
 - But... no real-time scheduling
 - And no priorities in ROS
 - \rightarrow Error easily 10ms or more due to process scheduling

Still trouble with people

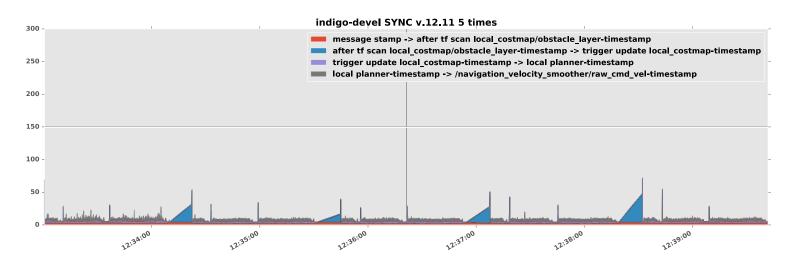


- Dynamic obstacles, such as persons, still pose issues
 - Robot started avoidance motion too late
- We examined sensor data age and found this:

Last-update age of costmap at time of control computation

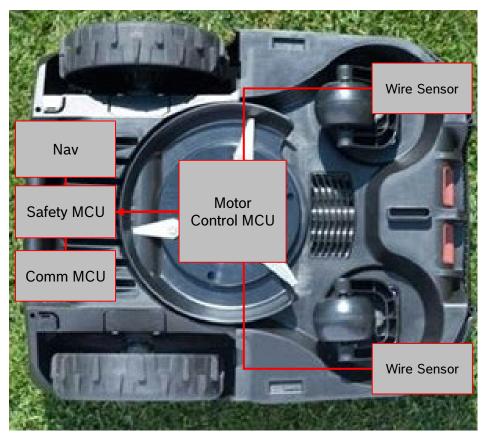

Processing in Costmap

- Time Definitions:
 - T_S^n LIDAR scan n is complete
 - T_U^n costmap is updated with scan n
 - T_C^k local planner starts computing control k
- "Sensor Data Age": $T_A^k = T_S^m T_C^k$, $m = \max_{m=1..N} (\{T_U^m < T_C^k\})$


Sensor Data Age Plot

Add synchronization

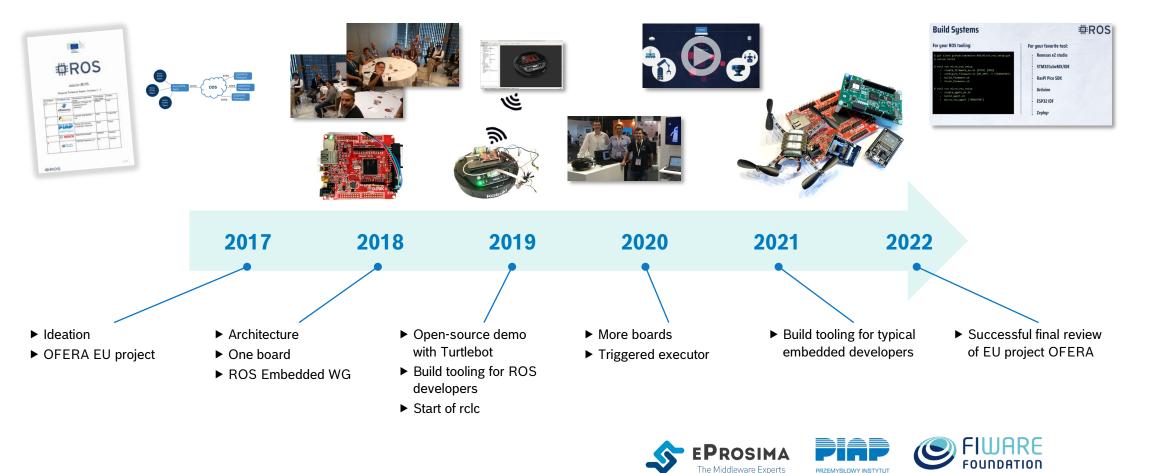
- Add notification so that controller runs after costmap update
- See ROSCon 2017 talk "Determinism in ROS or when things break sometimes and how to fix it" for more details
 - https://vimeo.com/236186712
 - <u>https://roscon.ros.org/2017/presentations/ROSCon%202017%20Determinism%20in%20ROS.pdf</u>



Micro-ROS

27

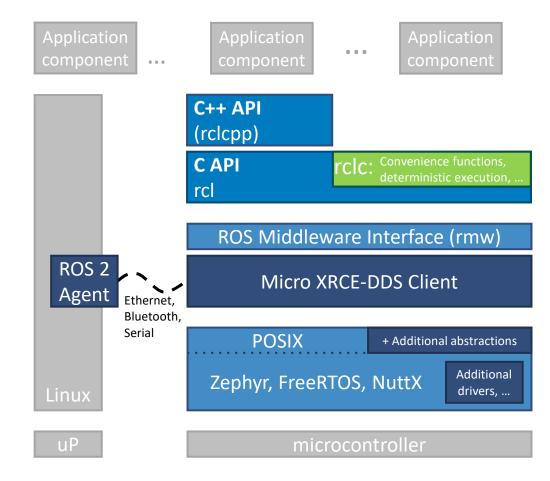
Micro-ROS



- Microcontrollers have been separate
- Goals
 - Seamless interoperability with ROS 2
 - ROS concepts on the MCU
 - Wide hardware/RTOS support
- And: Better determinism...

Image source: Bosch PowerTools GmbH, All rights reserved

Development of the micro-ROS project


PRZEMYSŁOWY INSTYTUT AUTOMATYKI I POMIARÓV

BOSCH

29 Ingo Lütkebohle | 2023-08-29

© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Micro-ROS Architecture

31 Ingo Lütkebohle | 2023-08-29

© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

FULL PORTABILITY

- Any RTOS and Bare metal Library Generator!
- Any low-mid range MCU!
- Typical features:
- ~ 150 KB of flash memory
- > 25 KB of RAM memory
- General purpose input/output pins Peripherals: GPIO, USB, Ethernet, SPI, UART, I2C, CAN, etc

REFERENCE HW

- Renesas RA6M5
- Arduino
- Raspberry Pi Pico
- Arduino Nano RP2040 Connect
- ESP-IDF v4.3 & ESP32-S2/C3
- Teensy 3.2 / 3.5 / 4.1 / 4.2
- OpenCR support
- STM32
- Crazyflie 2.1 drone, ...

- Mbed RTOS 6.8 / 6.9 / 6.10
- FreeRTOS
- NuttX 10.0 / 10.1
- Zephyr RTOS 2.4 / 2.5
- Azure RTOS ThreadX

Build Systems

For your ROS tooling:

\$ git clone github.com/micro-ROS/micro_ros_setup.git
\$ colcon build

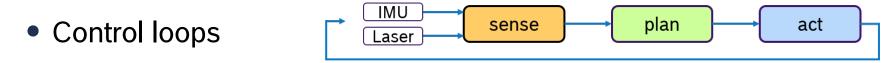
\$ ros2 run micro_ros_setup

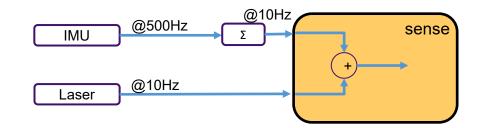
- └ create_firmware_ws.sh [RTOS] [MCU]
- configure_firmware.sh [MY_APP] -t [TRANSPORT]
- build_firmware.sh
- ↓ flash_firmware.sh

\$ ros2 run micro_ros_setup

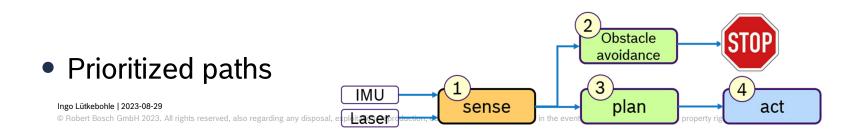
- create_agent_ws.sh
- ↓ build_agent.sh
- Ly micro_ros_agent [TRANSPORT]

For your favorite tool:


- r Renesas e2 studio
- STM32CubeMX/IDE
- RasPi Pico SDK
- Arduino
- ESP32 IDF
- Zephyr



Triggered Executor Concept

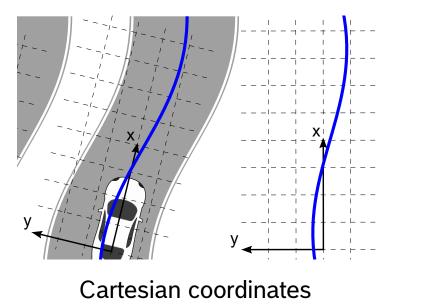


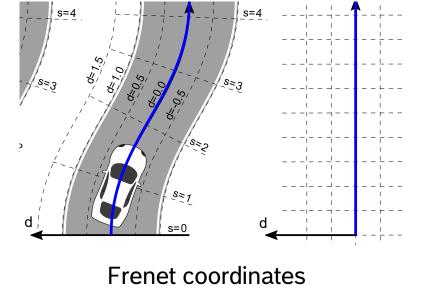
Extended API for typical patterns

Data fusion

Notes from BR2

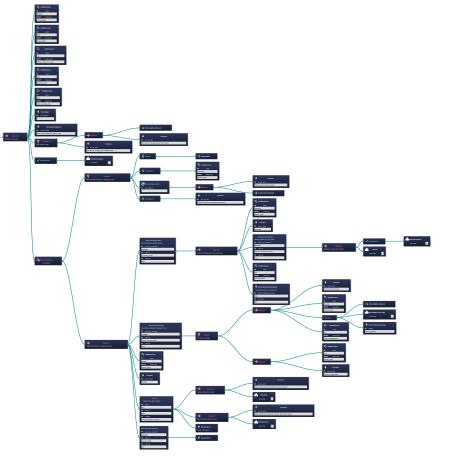
35


BR2 Challenges


- Rich sensor-set
 - LIDAR, stereo camera rig, environmental sensors, close distance sensors
- Heterogenous compute
 - ARM-based CPUs, GPU, NN-accelerator
- Scalable Autonomy
 - Full autonomy to full tele-op from afar

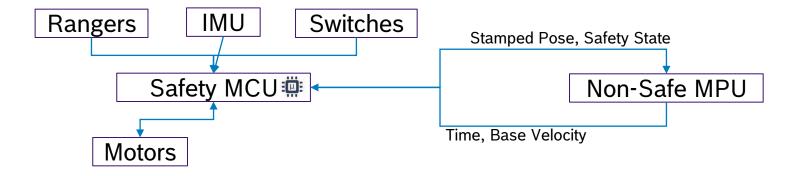
Leveraging Nav2

- Used for P2P and path-following
- Path-following uses DWB with custom critics to achieve sufficient precision



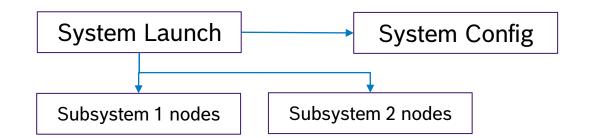
Hierarchical Behavior Tree Approach

- Bosch uses BTs at least since 2015
- Reduce complexity / improve performance through hierarchical BTs coupled with actions
- Image on right is full top-level BT not so complex, isn't it?
- Pro: Individual trees compact
- Con: Overall structure harder to see



CONVINCE

Leveraging micro-ROS


- Pro: Auto-generated messages, time-sync, transport-agnostic
- Con: RAM usage, perceived complexity

2-layer Launch

- Many ROS systems use a deep launch-file inclusion hierarchy
 - This causes a great deal of duplication for passing arguments
- Much content in launch files is also for handling arguments
 - Unecessary complexity

- 2-layer Launch
 - Bottom layer: Nodes for one subsystem
 - Top layer: Only includes from bottom layer
 - All arguments in single YAML file

DDS implementation assumptions vs Robotics needs

DDS Assumptions

- You need different QoS settings
- Throughput is more important than latency
- Network situations are stable
- Users able to configure networking precisely
- Multicast works
- Everybody may want to talk to everybody
- Capacity for plenty of discovery traffic
- One socket is enough for all topics
- Tooling needs to be DDS specific and detailed

Robotics Needs

- Topics need different QoS
- Throughput and latency are both important
- Networks are ad hoc
- Users (generally) know little about networks
- Multicast causes networks to fail
- Most connections are 1-1
- Network capacity is very limited
- Participants need to isolated
- Tooling needs to be integrated

Conclusions

The story continues in 2023...

 Bosch Engineering Group worked with Hako on the autonomous Scrubmaster B75, based on ROS 1

> Meanwhile, Bosch Rexroth also offers the VDA5050 compliant "ROKIT Navigator", based on ROS 2 Navigation 2

Conclusions

- ROS and ROS 2 have been an important foundation for our research for over a decade
- Journey
 - Tooling for development only
 - Prototyping in early stages
 - Product fully based on ROS 2

- ROS 2 has become more versatile but also more complex
- The layered approach has enabled things such as Micro-ROS and different executors

General

- Know and check your assumptions!
- Become a contributor, it's worth it

Thank you!

Questions? (Japanese is okay, will be translated for me)

