Building
robots with
ROS 2 and

rmw _zenoh

Yadunund Vijay
ROSCon Japan 2025,
Nagoya

Yadunund
“Yadu”
Vijay

Staff Software Engineer @
Intrinsic

@yadunund

GitHub

m @yadunundvijay

https://www.google.com/url?q=http://github.com/yadunund&sa=D&source=editors&ust=1758153282756119&usg=AOvVaw0RGggUJU89T2b6BfF05Hw7
https://www.google.com/url?q=https://www.linkedin.com/in/yadunundvijay&sa=D&source=editors&ust=1758153282756899&usg=AOvVaw2FeevtoU3qnNbMZcQwkLre

Imagine we’re
building a product

A mobile manipulator for
logistics and manufacturing.
O Autonomous navigation
O Pick & Place
The platform will need to
handle high-throughput sensor
data.
We must ensure the platform
has real-time control.
Interconnect several robots for
Fleet Management.

Typical hardware architecture

Motor Controller Unit
e Embedded platform
with RTOS
e Control of motorsin
arm and base

Main Compute (MC)

e Sensordrivers
e Perception &

localization

e Planning & trajectory
generation -

e Alinference & e2e oo "
models Controller <es ROS

e Cloud connectivity

Typical software architecture

Perception
stack

Sensor Planning
Drivers stack

o
Motor

Drivers Control
stack

E2E Al stack

ROS & Friends have your back

Perception
stack

& Behavior
Sensor Planning Engine
Drivers

stack

°
Drivers Control
stack
API Server

E2E Al stack

222 © >Movelt &

N AV 2

Practices

to significantly improve performance

Lifecycle
Nodes

= Managed states for ROS 2 nodes

O

O

Unconfigured, Inactive, Active,
Finalized

Custom states can exist between
these states.

= Why

O

O
O

Controlled and deterministic
startup.

Efficient resource management.
Improved fault tolerance and
recovery.

System health monitoring

https://qgithub.com/ros2/demos/blob/rollin

lifecycle/README.rst

uuuuuuuuuuu

ROS

https://www.google.com/url?q=https://github.com/ros2/demos/blob/rolling/lifecycle/README.rst&sa=D&source=editors&ust=1758153283599270&usg=AOvVaw1jJOWoYbKom_e4TormS2Wf

Composition

e Enhanced performance
from running multiple
nodes in the same process

e Potential to skip RMW layer
completely with
intra_process_communicati
on

o Skip message
serialization; exchange
pointers

e Supportedinrclcpp and
pending PR in rclpy.

Single Host

0x152004050 |
7 0x152004050 |

https://www.google.com/url?q=https://github.com/ros2/rclpy/pull/599&sa=D&source=editors&ust=1758153283624488&usg=AOvVaw3qElPPkFN3SkzfqB82Zo92
https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283625324&usg=AOvVaw1Txld9ke49E0-6Aefi1vX0

Impact of ROS 2 Node Composition in Robotic Systems, Macenski, et.al, https://arxiv.org/pdf/2305.09933

Composition

How much better is performance?

28% reduction in CPU & 33%
reduction in RAM usage for
nav2 demo

o Potential for more in your

application!

Lower latency in the system.
Lower system load_average
from fewer kernel operations
related to I/0
Consistent performance
across middlewares.

100 ///]
2
S 10 ﬁ
z
o
1
1 50 100 500 1000 5000
Message Size [KB]
10 /
7 1f
H
3
0.1
. .
1 50 100 500 1000 5000
Message Size [KB]
—— Multi-Process —&— Multi-Process w/ loaned-msg

3,000

2,000

Goodput [MB/s]

1,000

—a
0

R —

50 100

500 1000 5000

Message Size [KB)

~#— Multi-Process —&— Multi-Process w/ loaned-msg

—e— Composition

Comp. w/ IPC ’

Fig. 4: Maximum goodput between one publisher and one
subscription for different message sizes.

—e— Dynamic Composition —a—
Composition w/ IPC

Manual Composition

Fig. 3: CPU, latency for different message sizes.

TABLE I: Nav2 resources used on ARM and x86 platforms.

ARM

PSS [MB]

CPU [%]

Multi-Process 116.63 + 0.40 | 154.27 + 3.91
Manual Composition 77.84 £ 0.47 | 110.50 + 2.87
Dynamic Comp. (isolated) 78.63 £ 0.17 109.62 + 2.43
Dynamic Comp. (multi-threaded) 75.52 £ 0.71 140.32 + 7.05
x86 PSS [MB] CPU [%]

Multi-Process 118.85 £ 0.36 | 48.60 + 3.15
Manual Composition 67.13 + 0.18 36.60 + 4.22
Dynamic Comp. (isolated) 67.67 + 0.14 36.09 = 4.00
Dynamic Comp. (multi-threaded) 66.71 £ 0.27 46.27 £ 2.80

Composition

It’s easy to implement!

e Compile shared library
and register component.
e Tips for fewer copies

e Transfer ownership
when publishing.

e Subscribe to
ConstSharedPtr for
immutable reference
to message.

e Freedom to select the
type of executor.

add_library(talker_component SHARED src/talker_component.cpp)
rclcpp_components_register_nodes(talker_component
"composition::Talker")

// talker_component.cpp

auto msqg = std::make_unique<std_msgs::msg::String>();
pub_—>publish(std::move(msq));

#include "rclcpp_components/register_node_macro.hpp"
RCLCPP_COMPONENTS_REGISTER_NODE(composition::Talker)

// listener_component.cpp
auto callback =
[this](std_msgs::msg::String::ConstSharedPtr msg) = void
{
I

#include "rclcpp_components/register_node_macro.hpp"
RCLCPP_COMPONENTS_REGISTER_NODE(composition:Listener)

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283679899&usg=AOvVaw3ONj_T7geBN3zHON9BptgG

Composition

It’s easy to implement!

e Compose process at compile
time or runtime!

e Set
intra_process_comms=true
to bypass middleware if
possible.

o Zero-copy if single pub
& single sub

e Note: You can still start a
node with ros2 run
rclcpp_component talker

<launch>
<node ="rclcpp_components"
="component_container"
="my_container"

="screen">
<composable_node ="composition"
="composition:Talker"
="talker">
< ="use_intra_process_comms"

</composable_node>

<composable_node ="composition"
="composition:Listener"
="listener">
< ="use_intra_process_comms"

</composable_node>

</node>
</launch>

="true" />

="true" />

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283692351&usg=AOvVaw2yP10FJifo8pxj2tSTrOVY

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html#composition

Type
Adaptation

// image_publisher.cpp

auto msqg =
std::make_unique<sensor_msgs:msg::Image>();
pub_—>publish(std::move(msq));

// image_subscription.cpp

auto callback =
[this](sensor_msgs:msg:image::ConstSharedPtr msg) = void
{
cv::Mat mat;
memcpy(*msg—>data, mat.data, size);
// Inference logic.

%

Subscription still
copies to CV::Mat

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283703685&usg=AOvVaw2wV4BNWkO3_95dn0T9ycIp

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html#composition

Type // cv_mat_image_type_adapter.hpp

#include "rclcpp/type_adapter.hpp"

Ad a ptati on C.I.a.ss ROSCvMatContainer {

%
template<>
struct rclcpp::TypeAdapter<ROSCvMatContainer,

sensor_msgs:msg:Image> {

void convert_to_ros_message(...);

void convert_to_custom(...);

// image_publisher.cpp

auto msqg =
std::make_unique<sensor_msgs:msg::Image>();
pub_—>publish(std::move(msq));

5 ,

// image_subscription.cpp

auto callback =
[this](const ROSCvMatContainer & msg) = void
{
const cv::Mat & mat = msqg.cv_mat();
// Inference logic.

%

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283710045&usg=AOvVaw1tri_Qfgi_hyS1yxx0xL4w

Executors

e Execution managementin
ROS 2 is handled by
Executors

o Callbacks for timers,
subs, services, clients

e Default executoris
SingleThreadedExecutor

onGoal . nextCmd. processodom. User code
3) execute f

rcl — ROS Client Support Library

rmw — middleware interface

rmw adapter

8 Middleware
/cmdt /odomt

// Avoid this = Executor choice is ambiguous.
rclcpp::spin_some(node);

// Be explicit with the executor choice.
rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node);

executor.spin();

:::ROS

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Executors.html&sa=D&source=editors&ust=1758153283723350&usg=AOvVaw2MsM-q2RpUe_T0WGqNCfhf

https://discourse.openrobotics.org/t/the-ros-2-c-executors/

B singleThreadedExecutor [l MultiThreadedExecutor StaticSingleThreadedExecutor [lj EventsExecutor

Executors

13.1

There are more performant executors!

e EventsExeuctoris experimental but 0
already being adopted actively.
o Not default yet due to simulation
clock issue. 63 M ki S W i
e Other executors like the cm_executor
are actively being refined for L-turtle.

CPU [%]

400

200

// Switch to events exeuctor.
rclcpp::experimental::executors::EventsExecutor executor;
executor.add_node(node);

executor.spin();

https://www.google.com/url?q=https://github.com/ros2/rclcpp/issues/2480?reload%3D1&sa=D&source=editors&ust=1758153283800140&usg=AOvVaw2H34wTjEiDZk7iqYLIdjLh
https://www.google.com/url?q=https://github.com/ros2/rclcpp/issues/2480?reload%3D1&sa=D&source=editors&ust=1758153283800250&usg=AOvVaw0Hi3ZaN1NBduwmZ_jlzM7j
https://www.google.com/url?q=https://github.com/cellumation/cm_executors&sa=D&source=editors&ust=1758153283800369&usg=AOvVaw0T3l5hlrFIYoHlGh_ovAlH

Robot stack

Combine all of these for a really
performant stack!

In a previous case study we
reduced an entire CPU core
usage and lowered load
average from 8 to 3~ on a
Jetson platform.

Lifecycle
Nodes

Composition

Type
Adaptation

Events
Executor

Why do we need a middleware?

Low-level Motor Control
Unit (MCU)

LLLLRR RS

OV IS

e Embedded platform

e Real-time control of motors in
arm and base

e Safety controller

I I Main Compute
(MC)

Behavior
Engine

& Sensor Planning
Drivers stack

Diagnostics

Motor Drivers Control
stack

E2E Al stack '

API Server

Sensor drivers

Perception & localization
Planning & trajectory generation
Al inference & e2e models

Cloud connectivity

Two boards need to

Unit (MCU) (MC)

___________________ T e e
w hy d o we Low-level Motor Control I| Main Compute
k[O

need a
middleware?

Within central compute

e Not all nodes canrunin the
same process
o e.q.,rclcpp & rclpy
nodes.
e Not every topic has a single
pub & sub.
e Some topics have to bridge
component containers.
e Some topics have to bridge
to the other systems.
o Eg.Cloud computers

e Embedded platTOug e Sensordrivers
e Real-time control o e Perception & localization
arm and base 1 e Planning & trajectory generation
e Safety controller 1y e Alinference & e2e models
Iy e Cloud connectivity

CostMap

e

Middleware

Back to
our robot

:::ROS

A Tale of Two
Worlds: Colevel ot
High'LeVel (.Mcu)

Low-Level

MCUs

Question: How do we bridge the world of
ROS 2 nodes and the world of
resource-constrained microcontrollers?

7 :_ =

F T
E|

O O\

:::ROS

ROS 2 +
Zenoh to the

rescue ess . {#J Zenoh

e rmw_zenoh: ROS 2 Middleware based on Zenoh
protocol writen using zenoh-cpp.
e Core ROS 2 package and Tier-1 status since
Kilted Kaiju.
e TCP for discovery and transport.
o UDP, QUIC, etc can be configured
e Hop-to-hop reliability
e No QoS mismatches.
e Default topology
o Discovery is brokered by the Zenoh router
o Data transmission is P2P.
o Discovery range is localhost only

https://qithub.com/ros/rmw_zenoh

since
Kilted

Discovery

Transport

https://www.google.com/url?q=https://github.com/ros/rmw_zenoh&sa=D&source=editors&ust=1758153284387730&usg=AOvVaw2nH2DjS9E9RGPyU7qeXbMz

Let’s talk about the router

= |s it similar ROS 1’s roscore?
Yes, but it does a lot MORE as we’ll see.

What if the router crashes?

No impact on running Nodes. Y
ROS Daemon still present for graph cache. @

Just restart the router! No need to
re-launch your Nodes.

Is the router mandatory?

No. You can configure Zenoh for UDP
multicast discovery.

. (X X ™
Discovery Transport (X X) R O S
(X X

https://www.google.com/url?q=https://github.com/ros/rmw_zenoh&sa=D&source=editors&ust=1758153284903865&usg=AOvVaw0LmoUWZ6q0zb2GTp8gBqfn

Configuration is easy with

rmw_zenoh

e Default configuration files for
Router and Nodes tuned for good
out-of-box experience for most
use cases.

e New config files can be passed by
setting
ZENOH_ROUTER_CONFIG_URI and
ZENOH_SESSION_CONFIG_URI
envars

e Fields in the default config can be
overwritten using
ZENOH_CONFIG_OVERRIDE envar.

o export
ZENOH_CONFIG_OVERRIDE='connect/en
dpoints=["tcp/192.168.0.3:7447",
"tcp/192.168.0.4:7447"]

//;;default router configj\\\\

mode: "router",
listen: {
endpoints: [

"tep/[::]:7447"

i
scouting: {
multicast: {
enabled: false,
i
gossip: {

enabled: true,

/

///7; default session confiéf\\\

mode: "peer",
connect: {
endpoints: [

"tcp/localhost:7447"

H
listen: {
endpoints: [

"tcp/localhost:0"

o
scouting: {

multicast: {

_ !

enabled: false,

/

https://www.google.com/url?q=https://github.com/ros2/rmw_zenoh/tree/rolling/rmw_zenoh_cpp/config&sa=D&source=editors&ust=1758153284934812&usg=AOvVaw2kNQJ23axmZc2eyAlzrB8Y

ROS 2 +

ZenOh to the Low-level Motor
rescue Cor(\:zglul;mt

e rmw_zenoh running on
Central Compute

® pico-ros (zenoh-pico
wrapper) running on MCU

e Zenoh router running on
Central Compute
o MCU session connects

to the router. 33 ROS

00
https://qithub.com/Pico-ROS/Pico-ROS-software

F T
E|
O O\

https://www.google.com/url?q=https://github.com/Pico-ROS/Pico-ROS-software&sa=D&source=editors&ust=1758153284953336&usg=AOvVaw0PjziTTqyAqd_g4JopXllz

https://github.com/Yadunund/rmw_zenoh_examples/

Interoperability with microcontrollers

Low-level Motor
Control Unit
(MCU)

#include <picoros.h>

#define MODE "client"
#define DEFAULT_LOCATOR "tcp/10.0.0.228:7447"

picoros_publisher_t pub_odo = {
opic = {
.name ="odom",
type = ROSTYPE_NAME(ros_Odometry),
.rihs_hash = ROSTYPE_HASH(ros_Odometry),
h
i
picoros_node_t node = {
.name = "odometry_node",
i
picoros_node_init(&node);
picoros_publisher_declare(&node, &pub_odo);

uint8_t pub_buf[1024];

ros_Odometry odom={...}

size_t len = ps_serialize(pub_buf, &odom, 1024);
picoros_publish(&pub_odo, pub_buf, l[en);

Zenoh Router
listen:
“tcp/10.0.0.228:7447”

Main
Compute
(MC)

subscription_=
this=>create_subscription<nav_msgs:msg::Odometry>(
"odom",
odom_qos,
[this](nav_msgs:msg::Odometry::ConstSharedPtr msq)
{

N

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153284968166&usg=AOvVaw0lvBs6SDqvNxY9Gv5NqjRv

Congestion
control

= System load is largest at startup and
there is a high probability for important
messages to be dropped.
O Eg.PointCloud, OccupancyGrid
= Inrmw_zenoh, KEEP_ALL and RELIABLE
QoS settings will force publisher to use
reliable channels and always block
packages.
O But more resources required.
= Solution: We configure Zenoh to control
dropping & priority policy per topic.
O blockfirst makes congestion control
more robust and fair.

https://github.com/Yadunund/rmw_zenoh_examples/

Main Compute (MC)
Zenoh Router

listen:
“tcp/10.0.0.228:7447”

gos: {
publication: [
{

key_exprs: ["*/map/*/*"],

config: {
congestion_control: "blockfirst",
priority: "data_high",
express: true,
reliability: "reliable",

allowed_destination: "remote",

Set congestion
control to blockfirst
for /map

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153284996117&usg=AOvVaw3T_3wSxWR2c1kN00Y426P-

Main Compute (MC)
Zenoh Router

listen:
“tcp/10.0.0.228:7447”

Priority

gos:
= Zenoh can prioritize the delivery and publication: [
processing of data {
O Z_PRIORITY_REAL_TIME: Priority

w) - key_exprs: ["*/map/*/*"],
for “realtime” messages.

O Z_PRIORITY_DATA_HIGH: Highest config: {
priority for “data” messages. congestion_control: "blockfirst"”,
O (among others) priority: "data_high",

express: true,

= While RMW API does not allow priority
configuration, we cando soon a
per-topic basis in the Zenoh session
config. i

reliability: "reliable",

allowed_destination: "remote",

Set priority to
data_high for /map

https://github.com/Yadunund/rmw_zenoh_examples/

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153285011089&usg=AOvVaw2d2tHonxX0Btmglil_Fpjf

Containerization -" %

e Production systems often run processes in

Containerized ROS 2
components running
L [. . d
containers (isolation, OTA updates, etc) Host 2 in pods

o DDS discovery requires complex [zenoh-router-pod ‘/xf\/
networking config (--net=host, custom
bridges, multicast forwarding) to work , navigation-pod |
across containers.
e Wtih rmw_zenoh containers only need to | planning-pod

connect to the zenohd router's port. No
complex networking required.

e Thee Zenoh router transparently "tunnels” ROS
2 traffic between containers. It just works.

control-pod

perception-pod

:::ROS

Real-use case

X

Titase O iciace :
No Image pNo Image No Image
= Image g 5 Image o
No Image ge

No Image

e Intrinsic co-organized Bin
Picking Challenge with OpenCV.
e Participants submitted
containerized pose estimators.
e Seamless tunneling across
containers and WANs
o >200MB image payload
delivered reliably from
containers on edge device
to containers on cloud over
ROS 2 & rmw_zenoh.

No Image

[]

3 :
O :::ROS

OpenCV

https://github.com/opencv/bpc

https://www.google.com/url?q=https://github.com/opencv/bpc&sa=D&source=editors&ust=1758153285333574&usg=AOvVaw0HBTalVrnS9f8ew15GRnTg

Shared memory

rmw_zenoh now supports shared memory!

Disabled by default but can be enabled by

overriding config

o export

ZENOH_CONFIG_OVERRIDE='transpor
t/shared_memory/enabled=true’

Configurable SHM size (16 MB default).

Works seamlessly with remote & non

SHM-enabled nodes

o And across containers with --ipc=host

Even across
containers

Host L\/\/J

zenoh-router-pod]

navigation-pod

planning-pod

control-pod SHM

perception-pod

:::ROS

Security is Not an
Afterthought

rmw_zenoh supports access
control, authentication and
encryption.

zenoh_security_tools package
generate Zenoh configs based
on sros2 policies.

https://qgithub.com/ros2/rmw_zenoh/tree/rolling/zenoh_security tools

<policy version="0.2.0"
<enclaves>
<enclave path="/my_robot/map_server">
<profiles>
<profile ns="/" node="map_server">
<xizinclude href="common/node.xml"
xpointer="xpointer(/profile/*)"/>
<topics publish="ALLOW" >
<topic>map</topic>
</topics>
</profile>
</profiles>
</enclave> sros2 config
</policy>

Vv

4

[zenoh_security_tools }

4

=)) @) @) Zenoh

_ : : configs for
.json5 .json5 .json5

router and
nodes

https://www.google.com/url?q=https://github.com/ros2/rmw_zenoh/tree/rolling/zenoh_security_tools&sa=D&source=editors&ust=1758153285429835&usg=AOvVaw17yrkgc-YZU0h3e0vO5fma

Locking It Down with
rmw_zenoh

Host

zenoh-router-pod

\ﬁ

navigation-pod

_//
;y
(=

node_1][node_2][node_n

Component Container

O)

\

i

Zenoh config not signed
by authorized certificate
store

ros2 topic
pub
/cmd_vel

Zenoh config signed by
authorized certificate

ros2 topic
store

pub
/cmd_vel

From One Robot to a
Connected Fleet

e The Business Need:
o Fleet management
o Remote monitoring and telemetry.
o Remote debugging and teleoperation.
o Over-the-air updates.
e The Technical Challenge: How to bridge a local
robot network (often behind NAT/firewalls) to a
cloud service securely and efficiently?

https://github.com/Yadunund/rmw_zenoh_examples/

Fleet
management

Connecting
Worlds with
Zenoh
Routers

Zenoh routers can be linked
together.

Dashboard

Zenoh
router

o\ enon 0 gy B TR
Messages can be securely . 7 BTN ’sﬂ' =
routed to a cloud router -
which is authenticated.

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153285775695&usg=AOvVaw2U6wZAFG7VMz7lduu_aXn_

The Data Overload
Problem

We've connected a robot to other services
in the cloud, but we can't send all this data.
What do we do?

Solutions:

- Selective Bridging: Restrict what goes
out of the robot.

- Data Reduction: Compress and
Downsample data.

m,-0O-0/

) o

ROS

Selective bridging

Cloud router can be authenticated
to access only specific topics on the
robot.

Robot’s router will not forward topics
topics not in the allow list.

To remotely debug the robot, a
developer can authenticate with the
robot’s router using a config with
broader permissions.

Zenoh
router

/diagnostics

Zenoh
router

:::ROS

Downsample high
bandwidth topics

= We still want some topics but at a
lower frequency.

= Configure robot’s Zenoh router to
automatically downsample topics
when sending to the cloud!

= Also useful to control bandwidth and
adapt traffic when crossing system
boundaries (eq, from wired LAN to
wireless or GSM/LTE network)

https://github.com/Yadunund/rmw_zenoh_examples/

// Robot Router config.
downsampling: |

{

rules: [

key_expr: "*/scan/*/*",

freq: 1.0

}

// 1Hz for /tf topic.

{
key_expr: "*/tf/*[*"
freq: 1.0

}

~

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153285953248&usg=AOvVaw2WmisrmaiblS5ZfJ3-07h9

/scan

/joint_states
Robot Al

Zenoh
router

\ 3 2 i £ o " Soloct & cus C " — Moas bose Estima
(™) interact 42 Move Camera } Select «fi» Focus Camera £ Moasure /2D Pase Estimate »E (™ interact £ Move Camera JSeloct «8» Focus Camera 3 Moasuro /2D Pose Estimate

Cloud
Zenoh
router

Selective
downsampling

30Hz
within
Robot

1Hz within
cloud
system

31 fps

@ e zenoh_configs — ros2 topic hz jscan — 67x9 66x9

bash 2enoha neh.xr bot.rviz
yadunund-macbookpro:zenoh_configs yadunund$ ZENOH_SESSION_CONFIG_UR
I=robot_session_config.json5 ros2 topic hz /scan

hz fscan ¢ bast bash 4 LY ST 280N FPP T For i B bt sl
yadunund-macbookpro:zenoh_configs yadunund$ ZENOH_SESSION_CONFIG_U
RI=cloud_session_config.json5 ros2 topic hz /scan |

QUIC link used for all
connections OUTSIDE
the robot

QUIC transport
outside robot

~

e QUIC is amodern alternative designed to be faster, {
more efficient, and more secure than TCP/TLS. SOIMETEE
o Faster connections, no head-of-line-blocking, - CCTRMIES:)
["quic/your.cloud.server:7447"] // Use
built-in security (TLS 1.3) QUIC for robustness
e The connection is identified by a unique ID, not the },
IP address. // ... security config from before
o Switch networks without dropping the }
connection!
e Configure Zenoh routers to transmit data between \\ N/M
robot and cloud routers over QUIC! TCP link used for all
o QUIC is supported for both best effort and connections WITHIN the

robot
reliable traffic

HMIs and
dashboards

e Zenohisn'tjust for backends. It can run directly
in a web browser, allowing you to build rich, live
HMIs with minimal effort.

o Typescript implementation of Zenoh:
zenoh-ts

e Directly subscribe and visualize data from
robots in the fleet!

o Interoperability with rmw_zenoh is not as
seamless like pico-ros.
o Community contributions welcome!

https://github.com/eclipse-zenoh/zenoh-ts

// In the browser HMI
import { Zenoh } from '@zenoh/zenoh-ts';

const session = await Zenoh.open();
// Get status of robot 42

const status = await
session.get('robot_42/status');

:::ROS

https://www.google.com/url?q=https://github.com/eclipse-zenoh/zenoh-ts&sa=D&source=editors&ust=1758153286283367&usg=AOvVaw2RMjUAyKI8xUrD7k7njf6C

Putting it all together

ROS and it’s
ecosystem is full of
capabilities to build

most types of robotic
applications

Leverage
LifecycleNodes,
Composition, Type
Adapter & Events
Exeuctor to maximize
performance

Seamless communication across
resource constrained systems

.,
2
Fine tune transport within robot for

. reliable performance
rmw_zenoh is a robust P

and performant
middleware for building
ROS 2 applications

Seamless interconnection to remote
systems with fine-grain control of
transport

Questions

Congratulations on
architecting a robust
and scalable robot
product!

*ﬁn——-—w.ﬁ 3 ¢ '“3‘&%«“"“"_‘-,."'.‘ .
o

o -

?}

