
Building
robots with
ROS 2 and
rmw_zenoh
Yadunund Vijay
ROSCon Japan 2025,
Nagoya

Yadunund
“Yadu”
Vijay

Staff Software Engineer @
Intrinsic

@yadunund

@yadunundvijay

https://www.google.com/url?q=http://github.com/yadunund&sa=D&source=editors&ust=1758153282756119&usg=AOvVaw0RGggUJU89T2b6BfF05Hw7
https://www.google.com/url?q=https://www.linkedin.com/in/yadunundvijay&sa=D&source=editors&ust=1758153282756899&usg=AOvVaw2FeevtoU3qnNbMZcQwkLre

Imagine we’re
building a product
▪ A mobile manipulator for

logistics and manufacturing.
□ Autonomous navigation
□ Pick & Place

▪ The platform will need to
handle high-throughput sensor
data.

▪ We must ensure the platform
has real-time control.

▪ Interconnect several robots for
Fleet Management.

Typical hardware architecture

Main Compute (MC)
● Sensor drivers
● Perception &

localization
● Planning & trajectory

generation
● AI inference & e2e

models
● Cloud connectivity

Motor Controller Unit
● Embedded platform

with RTOS
● Control of motors in

arm and base

Safety
Controller

Typical software architecture

Sensor
Drivers

Motor
Drivers

Perception
stack

Control
stack

Planning
stack

E2E AI stack

Behavior
Engine

Diagnostics

API Server

ROS & Friends have your back

Sensor
Drivers

Motor
Drivers

Perception
stack

Control
stack

Planning
stack

E2E AI stack

Behavior
Engine

Diagnostics

API Server

ROS Best
Practices
to significantly improve performance

Lifecycle
Nodes
▪ Managed states for ROS 2 nodes

□ Unconfigured, Inactive, Active,
Finalized

□ Custom states can exist between
these states.

▪ Why
□ Controlled and deterministic

startup.
□ Efficient resource management.
□ Improved fault tolerance and

recovery.
□ System health monitoring

https://github.com/ros2/demos/blob/rolling/lifecycle/README.rst

https://www.google.com/url?q=https://github.com/ros2/demos/blob/rolling/lifecycle/README.rst&sa=D&source=editors&ust=1758153283599270&usg=AOvVaw1jJOWoYbKom_e4TormS2Wf

Composition
● Enhanced performance

from running multiple
nodes in the same process

● Potential to skip RMW layer
completely with
intra_process_communicati
on
○ Skip message

serialization; exchange
pointers

● Supported in rclcpp and
pending PR in rclpy.

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html#composition

publisher

Single Host

process_1

subscription

process_2
loop
back

Single Host
publisher

subscription

process_1

0x152004050

subscription

process_3

Extra CPU and
RAM for each

process

loop
back

Potential for
zero-copy if single

sub
subscription

process_3

Can still talk
outside container

loop
back

without composition

with composition

https://www.google.com/url?q=https://github.com/ros2/rclpy/pull/599&sa=D&source=editors&ust=1758153283624488&usg=AOvVaw3qElPPkFN3SkzfqB82Zo92
https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283625324&usg=AOvVaw1Txld9ke49E0-6Aefi1vX0

Composition
How much better is performance?
● 28% reduction in CPU & 33%

reduction in RAM usage for
nav2 demo
○ Potential for more in your

application!
● Lower latency in the system.
● Lower system load_average

from fewer kernel operations
related to I/O

● Consistent performance
across middlewares.

Impact of ROS 2 Node Composition in Robotic Systems, Macenski, et.al, https://arxiv.org/pdf/2305.09933

Composition
It’s easy to implement!
● Compile shared library

and register component.
● Tips for fewer copies

● Transfer ownership
when publishing.

● Subscribe to
ConstSharedPtr for
immutable reference
to message.

● Freedom to select the
type of executor.

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html#composition

add_library(talker_component SHARED src/talker_component.cpp)
rclcpp_components_register_nodes(talker_component
"composition::Talker")

// talker_component.cpp

 auto msg = std::make_unique<std_msgs::msg::String>();
 pub_→publish(std::move(msg));

#include "rclcpp_components/register_node_macro.hpp"
RCLCPP_COMPONENTS_REGISTER_NODE(composition::Talker)

// listener_component.cpp

 auto callback =
 [this](std_msgs::msg::String::ConstSharedPtr msg) → void
 {
 . . .
 };

#include "rclcpp_components/register_node_macro.hpp"
RCLCPP_COMPONENTS_REGISTER_NODE(composition::Listener)

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283679899&usg=AOvVaw3ONj_T7geBN3zHON9BptgG

Composition
It’s easy to implement!
● Compose process at compile

time or runtime!
● Set

intra_process_comms=true
to bypass middleware if
possible.
○ Zero-copy if single pub

& single sub
● Note: You can still start a

node with ros2 run
rclcpp_component talker

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html#composition

<launch>
 <node pkg="rclcpp_components"
 executable="component_container"
 name="my_container"
 namespace=""
 output="screen">

 <composable_node pkg="composition"
 plugin="composition::Talker"
 name="talker">
 <param name="use_intra_process_comms" value="true" />
 </composable_node>

 <composable_node pkg="composition"
 plugin="composition::Listener"
 name="listener">
 <param name="use_intra_process_comms" value="true" />
 </composable_node>

 </node>
</launch>

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283692351&usg=AOvVaw2yP10FJifo8pxj2tSTrOVY

Type
Adaptation

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html#composition

// image_publisher.cpp

 auto msg =
std::make_unique<sensor_msgs::msg::Image>();
 pub_→publish(std::move(msg));

// image_subscription.cpp

 auto callback =
 [this](sensor_msgs::msg::Image::ConstSharedPtr msg) → void
 {
 cv::Mat mat;
 memcpy(*msg→data, mat.data, size);
 // Inference logic.
 };

Subscription still
copies to CV::Mat

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283703685&usg=AOvVaw2wV4BNWkO3_95dn0T9ycIp

Type
Adaptation

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html#composition

// image_publisher.cpp

 auto msg =
std::make_unique<sensor_msgs::msg::Image>();
 pub_→publish(std::move(msg));

// cv_mat_image_type_adapter.hpp
#include "rclcpp/type_adapter.hpp"

class ROSCvMatContainer {
 . . .
};
template<>
struct rclcpp::TypeAdapter<ROSCvMatContainer,
 sensor_msgs::msg::Image> {
 void convert_to_ros_message(. . .);
 void convert_to_custom(. . .);
};

// image_subscription.cpp

 auto callback =
 [this](const ROSCvMatContainer & msg) → void
 {
 const cv::Mat & mat = msg.cv_mat();
 // Inference logic.
 };

Skips copy

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Composition.html%23composition&sa=D&source=editors&ust=1758153283710045&usg=AOvVaw1tri_Qfgi_hyS1yxx0xL4w

Executors
● Execution management in

ROS 2 is handled by
Executors
○ Callbacks for timers,

subs, services, clients
● Default executor is

SingleThreadedExecutor

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Executors.html

// Avoid this → Executor choice is ambiguous.
rclcpp::spin_some(node);

// Be explicit with the executor choice.
rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node);
executor.spin();

https://www.google.com/url?q=https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Executors.html&sa=D&source=editors&ust=1758153283723350&usg=AOvVaw2MsM-q2RpUe_T0WGqNCfhf

Executors
There are more performant executors!
● EventsExeuctor is experimental but

already being adopted actively.
○ Not default yet due to simulation

clock issue.
● Other executors like the cm_executor

are actively being refined for L-turtle.

https://discourse.openrobotics.org/t/the-ros-2-c-executors/

// Switch to events exeuctor.
rclcpp::experimental::executors::EventsExecutor executor;
executor.add_node(node);
executor.spin();

https://www.google.com/url?q=https://github.com/ros2/rclcpp/issues/2480?reload%3D1&sa=D&source=editors&ust=1758153283800140&usg=AOvVaw2H34wTjEiDZk7iqYLIdjLh
https://www.google.com/url?q=https://github.com/ros2/rclcpp/issues/2480?reload%3D1&sa=D&source=editors&ust=1758153283800250&usg=AOvVaw0Hi3ZaN1NBduwmZ_jlzM7j
https://www.google.com/url?q=https://github.com/cellumation/cm_executors&sa=D&source=editors&ust=1758153283800369&usg=AOvVaw0T3l5hlrFIYoHlGh_ovAlH

Robot stack
Combine all of these for a really
performant stack!
● In a previous case study we

reduced an entire CPU core
usage and lowered load
average from 8 to 3~ on a
Jetson platform.

Lifecycle
Nodes

Composition

Type
Adaptation

Events
Executor

Why do we need a middleware?
Main Compute

(MC)
Low-level Motor Control

Unit (MCU)

● Sensor drivers
● Perception & localization
● Planning & trajectory generation
● AI inference & e2e models
● Cloud connectivity

● Embedded platform
● Real-time control of motors in

arm and base
● Safety controller

Sensor
Drivers

Motor Drivers

Perception
stack

Control
stack

Planning
stack

E2E AI stack

Behavior
Engine

Diagnostics

API Server

Two boards need to
talk

Why do we
need a
middleware?
Within central compute
● Not all nodes can run in the

same process
○ e.g., rclcpp & rclpy

nodes.
● Not every topic has a single

pub & sub.
● Some topics have to bridge

component containers.
● Some topics have to bridge

to the other systems.
○ Eg. Cloud computers

camera_driver

Pointcloud
sub

perception_container

planner_node

navigation_container

amcl_node

Main Compute
(MC)

Low-level Motor Control
Unit (MCU)

● Sensor drivers
● Perception & localization
● Planning & trajectory generation
● AI inference & e2e models
● Cloud connectivity

● Embedded platform
● Real-time control of motors in

arm and base
● Safety controller

Sensor
Drivers

Motor Drivers

Perception
stack

Control
stack

Planning
stack

E2E AI stack

Behavior
Engine

Diagnostics

Dashboard

CostMap

ai_py_node

Middleware

cloud

Back to
our robot

A Tale of Two
Worlds:
High-Level
ROS 2 &
Low-Level
MCUs

Question: How do we bridge the world of
ROS 2 nodes and the world of
resource-constrained microcontrollers?

Main
Compute

(MC)

Low-level Motor
Control Unit

(MCU)

ROS 2 +
Zenoh to the
rescue
● rmw_zenoh: ROS 2 Middleware based on Zenoh

protocol writen using zenoh-cpp.
● Core ROS 2 package and Tier-1 status since

Kilted Kaiju.
● TCP for discovery and transport.

○ UDP, QUIC, etc can be configured
● Hop-to-hop reliability
● No QoS mismatches.
● Default topology

○ Discovery is brokered by the Zenoh router
○ Data transmission is P2P.
○ Discovery range is localhost only

https://github.com/ros/rmw_zenoh

X

Tier-1
since
Kilted

Discovery

Host 1

Zenoh Router

Node_1

Node_2

Node_4

Node_3

Transport

https://www.google.com/url?q=https://github.com/ros/rmw_zenoh&sa=D&source=editors&ust=1758153284387730&usg=AOvVaw2nH2DjS9E9RGPyU7qeXbMz

Let’s talk about the router
▪ Is it similar ROS 1’s roscore?

Yes, but it does a lot MORE as we’ll see.
▪ What if the router crashes?

No impact on running Nodes.
ROS Daemon still present for graph cache.
Just restart the router! No need to
re-launch your Nodes.

▪ Is the router mandatory?
No. You can configure Zenoh for UDP
multicast discovery.

https://github.com/ros/rmw_zenoh

Host 2

Zenoh Router

Node_1

Node_2

Node_4

Node_3

Discovery

Host 1

Zenoh Router

Node_1

Node_2

Node_4

Node_3

Transport

🤖

https://www.google.com/url?q=https://github.com/ros/rmw_zenoh&sa=D&source=editors&ust=1758153284903865&usg=AOvVaw0LmoUWZ6q0zb2GTp8gBqfn

Configuration is easy with
rmw_zenoh
● Default configuration files for

Router and Nodes tuned for good
out-of-box experience for most
use cases.

● New config files can be passed by
setting
ZENOH_ROUTER_CONFIG_URI and
ZENOH_SESSION_CONFIG_URI
envars

● Fields in the default config can be
overwritten using
ZENOH_CONFIG_OVERRIDE envar.

○ export
ZENOH_CONFIG_OVERRIDE='connect/en
dpoints=["tcp/192.168.0.3:7447",
"tcp/192.168.0.4:7447"]'

// default router config.

 mode: "router",

 listen: {

 endpoints: [

 "tcp/[::]:7447"

],

 },

 scouting: {

 multicast: {

 enabled: false,

 },

 gossip: {

 enabled: true,

 },

 },

// default session config.

 mode: "peer",

 connect: {

 endpoints: [

 "tcp/localhost:7447"

],

 },

 listen: {

 endpoints: [

 "tcp/localhost:0"

],

 },

 scouting: {

 multicast: {

 enabled: false,

 }

https://www.google.com/url?q=https://github.com/ros2/rmw_zenoh/tree/rolling/rmw_zenoh_cpp/config&sa=D&source=editors&ust=1758153284934812&usg=AOvVaw2kNQJ23axmZc2eyAlzrB8Y

ROS 2 +
Zenoh to the
rescue
● rmw_zenoh running on

Central Compute
● pico-ros (zenoh-pico

wrapper) running on MCU
● Zenoh router running on

Central Compute
○ MCU session connects

to the router.
https://github.com/Pico-ROS/Pico-ROS-software

Main
Compute

(MC)

Low-level Motor
Control Unit

(MCU)

https://www.google.com/url?q=https://github.com/Pico-ROS/Pico-ROS-software&sa=D&source=editors&ust=1758153284953336&usg=AOvVaw0PjziTTqyAqd_g4JopXllz

Interoperability with microcontrollers

Main
Compute

(MC)
Low-level Motor

Control Unit
(MCU)

#include <picoros.h>

#define MODE "client"
#define DEFAULT_LOCATOR "tcp/10.0.0.228:7447"

picoros_publisher_t pub_odo = {
 .topic = {
 .name = "odom",
 .type = ROSTYPE_NAME(ros_Odometry),
 .rihs_hash = ROSTYPE_HASH(ros_Odometry),
 },
};
picoros_node_t node = {
 .name = "odometry_node",
};
picoros_node_init(&node);
picoros_publisher_declare(&node, &pub_odo);

uint8_t pub_buf[1024];
ros_Odometry odom = { … }
size_t len = ps_serialize(pub_buf, &odom, 1024);
picoros_publish(&pub_odo, pub_buf, len);

https://github.com/Yadunund/rmw_zenoh_examples/

Zenoh Router
listen:

“tcp/10.0.0.228:7447”

subscription_ =
this→create_subscription<nav_msgs::msg::Odometry>(
 "odom",
 odom_qos,
 [this](nav_msgs::msg::Odometry::ConstSharedPtr msg)
 {

…
 });

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153284968166&usg=AOvVaw0lvBs6SDqvNxY9Gv5NqjRv

Congestion
control
▪ System load is largest at startup and

there is a high probability for important
messages to be dropped.

□ Eg. PointCloud, OccupancyGrid
▪ In rmw_zenoh, KEEP_ALL and RELIABLE

QoS settings will force publisher to use
reliable channels and always block
packages.

□ But more resources required.
▪ Solution: We configure Zenoh to control

dropping & priority policy per topic.
□ blockfirst makes congestion control

more robust and fair.

 qos: {

 publication: [

 {

 key_exprs: ["*/map/*/*"],

 config: {

 congestion_control: "blockfirst",

 priority: "data_high",

 express: true,

 reliability: "reliable",

 allowed_destination: "remote",

 },

 },

],

 }

Main Compute (MC)
Zenoh Router

listen:
“tcp/10.0.0.228:7447”

Set congestion
control to blockfirst

for /map

https://github.com/Yadunund/rmw_zenoh_examples/

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153284996117&usg=AOvVaw3T_3wSxWR2c1kN00Y426P-

Priority
▪ Zenoh can prioritize the delivery and

processing of data
□ Z_PRIORITY_REAL_TIME: Priority

for “realtime” messages.
□ Z_PRIORITY_DATA_HIGH: Highest

priority for “data” messages.
□ (among others)

▪ While RMW API does not allow priority
configuration, we can do so on a
per-topic basis in the Zenoh session
config.

 qos: {

 publication: [

 {

 key_exprs: ["*/map/*/*"],

 config: {

 congestion_control: "blockfirst",

 priority: "data_high",

 express: true,

 reliability: "reliable",

 allowed_destination: "remote",

 },

 },

],

 }

Main Compute (MC)
Zenoh Router

listen:
“tcp/10.0.0.228:7447”

Set priority to
data_high for /map

https://github.com/Yadunund/rmw_zenoh_examples/

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153285011089&usg=AOvVaw2d2tHonxX0Btmglil_Fpjf

Containerization
● Production systems often run processes in

containers (isolation, OTA updates, etc)
○ DDS discovery requires complex

networking config (--net=host, custom
bridges, multicast forwarding) to work
across containers.

● Wtih rmw_zenoh containers only need to
connect to the zenohd router's port. No
complex networking required.

● Thee Zenoh router transparently "tunnels" ROS
2 traffic between containers. It just works.

Host

zenoh-router-pod

navigation-pod

planning-pod

control-pod

perception-pod

Containerized ROS 2
components running

in pods

Real-use case
● Intrinsic co-organized Bin

Picking Challenge with OpenCV.
● Participants submitted

containerized pose estimators.
● Seamless tunneling across

containers and WANs
○ >200MB image payload

delivered reliably from
containers on edge device
to containers on cloud over
ROS 2 & rmw_zenoh.

https://github.com/opencv/bpc

https://www.google.com/url?q=https://github.com/opencv/bpc&sa=D&source=editors&ust=1758153285333574&usg=AOvVaw0HBTalVrnS9f8ew15GRnTg

Shared memory
● rmw_zenoh now supports shared memory!
● Disabled by default but can be enabled by

overriding config
○ export

ZENOH_CONFIG_OVERRIDE='transpor
t/shared_memory/enabled=true'

● Configurable SHM size (16MB default).
● Works seamlessly with remote & non

SHM-enabled nodes
○ And across containers with --ipc=host

Host

zenoh-router-pod

navigation-pod

planning-pod

control-pod

perception-pod

SHM

Even across
containers

Security is Not an
Afterthought

rmw_zenoh supports access
control, authentication and
encryption.

zenoh_security_tools package
generate Zenoh configs based
on sros2 policies.

https://github.com/ros2/rmw_zenoh/tree/rolling/zenoh_security_tools

<policy version="0.2.0"
 <enclaves>
 <enclave path="/my_robot/map_server">
 <profiles>
 <profile ns="/" node="map_server">
 <xi:include href="common/node.xml"
 xpointer="xpointer(/profile/*)"/>
 <topics publish="ALLOW" >
 <topic>map</topic>
 </topics>
 </profile>
 </profiles>
 </enclave>
</policy>

zenoh_security_tools

.json5

sros2 config

.json5

Zenoh
configs for
router and

nodes

.json5

https://www.google.com/url?q=https://github.com/ros2/rmw_zenoh/tree/rolling/zenoh_security_tools&sa=D&source=editors&ust=1758153285429835&usg=AOvVaw17yrkgc-YZU0h3e0vO5fma

Locking It Down with
rmw_zenoh

Host

zenoh-router-pod

navigation-pod

Component Container

node_1 node_2 node_n

󰠁

󰠁

Zenoh config not signed
by authorized certificate

store

Zenoh config signed by
authorized certificate

store

✅

❌
ros2 topic

pub
/cmd_vel

ros2 topic
pub

/cmd_vel

From One Robot to a
Connected Fleet
● The Business Need:

○ Fleet management
○ Remote monitoring and telemetry.
○ Remote debugging and teleoperation.
○ Over-the-air updates.

● The Technical Challenge: How to bridge a local
robot network (often behind NAT/firewalls) to a
cloud service securely and efficiently?

Connecting
Worlds with
Zenoh
Routers
Zenoh routers can be linked
together.

Messages can be securely
routed to a cloud router
which is authenticated.

Zenoh
router

Zenoh
router

Zenoh
router

Zenoh
router

Zenoh
router

Zenoh
router

Zenoh
router

Fleet
management

Dashboard

TLS
TLS

TLS
TLS

https://github.com/Yadunund/rmw_zenoh_examples/

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153285775695&usg=AOvVaw2U6wZAFG7VMz7lduu_aXn_

The Data Overload
Problem
We've connected a robot to other services
in the cloud, but we can't send all this data.
What do we do?
Solutions:

- Selective Bridging: Restrict what goes
out of the robot.

- Data Reduction: Compress and
Downsample data.

Selective bridging

● Cloud router can be authenticated
to access only specific topics on the
robot.

● Robot’s router will not forward topics
topics not in the allow list.

● To remotely debug the robot, a
developer can authenticate with the
robot’s router using a config with
broader permissions.

Zenoh
router

Zenoh
router

/diagnostics

󰠁

Downsample high
bandwidth topics

▪ We still want some topics but at a
lower frequency.

▪ Configure robot’s Zenoh router to
automatically downsample topics
when sending to the cloud!

▪ Also useful to control bandwidth and
adapt traffic when crossing system
boundaries (eg, from wired LAN to
wireless or GSM/LTE network)

// Robot Router config.

downsampling: [

 { rules: [

 {

 key_expr: "*/scan/*/*",

 freq: 1.0

 },

 // 1Hz for /tf topic.

 {

 key_expr: "*/tf/*/*",

 freq: 1.0

 },

],

 },

],

https://github.com/Yadunund/rmw_zenoh_examples/

https://www.google.com/url?q=https://github.com/Yadunund/rmw_zenoh_examples/&sa=D&source=editors&ust=1758153285953248&usg=AOvVaw2WmisrmaiblS5ZfJ3-07h9

Cloud
Zenoh
router

Robot
Zenoh
router

/scan
/joint_states

/tf

30Hz
within
Robot

1Hz within
cloud

system

Selective
downsampling

QUIC transport
outside robot
● QUIC is a modern alternative designed to be faster,

more efficient, and more secure than TCP/TLS.
○ Faster connections, no head-of-line-blocking,

built-in security (TLS 1.3)
● The connection is identified by a unique ID, not the

IP address.
○ Switch networks without dropping the

connection!
● Configure Zenoh routers to transmit data between

robot and cloud routers over QUIC!
○ QUIC is supported for both best effort and

reliable traffic

{

 connect: {

 endpoints:
["quic/your.cloud.server:7447"] // Use
QUIC for robustness

 },

 // ... security config from before

}

TCP link used for all
connections WITHIN the

robot

QUIC link used for all
connections OUTSIDE

the robot

HMIs and
dashboards
● Zenoh isn't just for backends. It can run directly

in a web browser, allowing you to build rich, live
HMIs with minimal effort.
○ Typescript implementation of Zenoh:

zenoh-ts
● Directly subscribe and visualize data from

robots in the fleet!
○ Interoperability with rmw_zenoh is not as

seamless like pico-ros.
○ Community contributions welcome!

// In the browser HMI
import { Zenoh } from '@zenoh/zenoh-ts';

const session = await Zenoh.open();
// Get status of robot 42
const status = await
session.get('robot_42/status');

https://github.com/eclipse-zenoh/zenoh-ts

https://www.google.com/url?q=https://github.com/eclipse-zenoh/zenoh-ts&sa=D&source=editors&ust=1758153286283367&usg=AOvVaw2RMjUAyKI8xUrD7k7njf6C

Putting it all together

ROS and it’s
ecosystem is full of
capabilities to build

most types of robotic
applications

Leverage
LifecycleNodes,

Composition, Type
Adapter & Events

Exeuctor to maximize
performance

rmw_zenoh is a robust
and performant

middleware for building
ROS 2 applications

Seamless communication across
resource constrained systems

Fine tune transport within robot for
reliable performance

Seamless interconnection to remote
systems with fine-grain control of

transport

Questions

Congratulations on
architecting a robust
and scalable robot
product!

